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Abstract: Catalysis represents a very essential aspect of chemical production and industrial growth and development. 

However, designing ideal green catalysts for various chemical processes can be challenging as the usual theoretical 

noesis coupled with the customary traditional methods (involving reiterative trials-and-errors), can be exhausting, 

uneconomical and as well as appear inviable in certain cases. This is owing to the fact that going beyond the stale 

empirical techniques, as catalytic chemical processes become more and more advanced and complicated, catalysts 

design have advanced beyond the adopted theoretical studies into deep structural and morphological studies of the 

chemical space of catalytic materials and even as far as involving smart learning (which engages computer aid in 

catalysts design). Thus, in contribution to the research efforts made towards transcending the challenges 

encountered by catalyst design practitioners, this review highlights some noteworthy benefits of inculcating artificial 

intelligence, a top-down front liner approach which have essentially facilitated present day advancements in catalysts 

design and promotion of green catalysis. 
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1.   INTRODUCTION 

Artificial Intelligence in Catalyst Design 

Artificial Intelligence (AI) is the science that engages the intelligence of machines, particularly computer systems. Despite 

their ginormous value, not few commercial catalysts (predominantly heterogeneous) have been discovered using trial-and-

error experimental approaches that rely on the chemical intuition of catalysis practicians [1]. The understanding in early 

times have been obscure and ambiguous. However, in current times research methodologies have switched from notional 

and theoretical studies to data-driven experimental discoveries. The difficulties associated with deviating from the usual 

empirical experimental approaches towards catalyst design using Predictive Models are multifaceted, including the fact 

that heterogeneous catalysis spans time and length scales of more than nine orders of magnitude [12], and that the catalyst 

performance depends on many variables, such as; the catalyst composition, morphology, support material and reaction 

environment conditions (including temperature, solvent and external potential). This inexactness and extensiveness of the 

parameter space makes the design and optimization of heterogeneous catalysts challenging. In recent past, research 

specialists have turned to machine learning (ML) as an advanced technique to accelerate the study and discovery of catalysts, 

by using its tools to navigate the parameter space more efficiently [3-6].  

ML is a part of the computer science field specifically concerned with AI – the use of algorithms for data interpretation in 

a manner that replicates the human learning method. ML teaches computer systems to make decisions by learning from 

large data sets. The goal is for the machine to improve its learning accuracy and provide data based on that learning to the 

user [7]. However, it is recognized that ML is already boosting computational chemistry and chemical engineering, at 

various levels [8-18]. Although various facets have been influenced, however there are complications arising from 

inconsistency in summarizing the developments in the enumerated areas of ML application [19]. These are extracted from 
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recent contributions, that can be regarded as complementary and providing an overall perspective of the applications. In 

summary, the recent recorded contributions that can be reckoned to as complemental and rendering a general paradigm of 

its application can be summed up in these different comprehensive and conceptual approaches in:  

1. Understanding and controlling chemical systems and related behavior [12, 20-27]; 

2. Computing, optimizing, or predicting structure-property relationships [28-32], density functional theory (DFT) 

functionals, and interatomic potentials [24, 33-39];  

3. Driving generative models for inverse design (i.e., produce stable molecules from a set of desired properties) [40-51]; 

4. Screening, synthesizing, and characterizing new compounds and materials [52-56];  

5. Improving catalytic technologies and analytical tools [39, 47, 57-60];  

6. Developing quantum algorithms for molecular simulations, and progressing quantum sensing [24, 27, 29, 61-65], and 

so on but to mention a few examples.  

The complementary fields of chemical sciences and engineering are data-rich areas, encompassing complex information 

which is often unstructured and poorly understood. The inculcation of AI has overwhelmingly reduced the challenges in 

design and the tediousness of experiment by enabling laboratory computerization and mechanization [66], prognosticate 

bioactivities of new drugs [67-69], optimizing conditions of reactions [70] and proposing synthetic routes to complex target 

molecules [71]. 

ML Models in Catalyst Design  

ML is a subfield of AI that embraces methods that self-deduce perceptual structures and patterns from related data. Catalysis 

researchers have taken advantage of these learned structures and patterns to streamline their work in various gray areas and 

at different levels, including atomistic simulation of reaction conditions [72, 73], catalyst surface phase diagram 

construction, reaction mechanism prediction [74, 75] and catalyst structure disambiguation [76-78]. Most applications of 

ML in catalysis thus far have used Black-Box Models (such as Gaussian process models or neural networks), widely used 

in catalysis – of which computational high-throughput catalyst screening has benefitted the most [79-82] in making 

predictions of computable physical properties (also known as descriptors) such as adsorption or formation energies, that 

can be related to the performance (that is, activity or stability) of the catalyst material [1-4]. A models’ interpretability and 

accuracy are key to its implementation. However, black-box models are accuracy biased over interpretability/explainability. 

The challenge with extracting meaningful physical insights from black-box models as a result of the high degree of 

complexity of the models is as a result of the cumbersomeness of its internal logic making it not readily explainable. 

However, in order to bypass the critical challenge associated with black-box models in interpreting the internal logic leading 

to the conclusive results of the model, there exists a class of methods for indirectly extracting interpretable information 

from black-box ML models after training. These approaches are termed post-hoc analysis methods, referred to as Grey-

Box Methods.  

A number of grey-box methods are model-agnostic and thence usable with any class of ML model. The information from 

grey-box methods can take variety of forms but is usually a set of visualizations or sensitivity measures called feature-

importance scores [71]. Grey-box methods can generate explanations that are either global or local. Global explanations 

allow interpretation of the dataset-level relationships and patterns learned by black-box models, whereas local explanations 

allow practitioners to understand why black-box models make a specific prediction for a single data point. Not all ML 

methods require a grey-box method to interpret the relationships they have uncovered. Some ML methods yield such 

insights directly, referred to herein as Glass-Box Models.  

Glass-box models are used to find simple analytical expressions that relate input variables to target properties, to identify 

hidden or underlying structures in the data, to make predictions under enforced modularity or causal structure, or to suggest 

causal structure directly. Generally, these glass-box methods have constraints, such as enforced simplicity, that make direct 

interpretation of glass-box ML results possible. However, glass-box methods are preferred over others if extracting scientific 

insight is the central objective. Notwithstanding, in spite of the accomplishments of explainable ML application in catalysis, 

hitherto the field is still incipient, with significant challenges yet to be surmounted for it to reach its full potential. 

Esterhuizen el al. [1] accordingly highlighted the critical challenges that are related to ML’s desegregation with 
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experimentation, including; desegregating explainable ML with experimental data, capturing the intricacies of catalysts 

design with ML-deduced descriptors, magnitude of dataset, model accessibility and recyclability, explicating 

interpretations. In other to address these challenges, researchers (both theorists and experimentalists) must cooperate 

attentively. 

There are higher chances based on speculations of an increase in research interest on the application of ML in the field of 

heterogeneous catalysis in the future. It is near certain considering the complexity of the challenges (such as uncovering 

structure–mechanism–reactivity relationships for multi-component catalysts; explicating the physicochemical properties 

that govern photocatalytic, plasma-catalytic and electro catalytic reactions; analyzing microscopic and spectroscopic data; 

etc.,) encountered in the field are advanced for simple experimentations to rede. ML offers great prospects in tackling such 

problems.  

Records of its early success for progressively accelerating research and development in different fields of application 

invigorates the sureness in its ability to fast track tackling these challenges. Nevertheless, applications of ML to generate 

novel cognition and hypotheses remain few and far between. However, Strieth et al. [71] points out that this is chiefly due 

to the fact that most applications of ML in catalysis up till present have utilized black-box models. Black-box models can 

be advantageous from the pragmatic standpoint of high its predictive accuracy. Nonetheless, directly interpreting their 

behavior is intractable. Several interpretable ML methods have been employed in recent heterogeneous catalysis studies, 

which have been broadly grouped into grey-box and glass-box methods. Grey-box methods allows for the interpretation of 

black box-models (like glass-box models which have this built-in feature). However, sole reliance on grey-box methods is 

risky as a result of a potential information gap between the black-box model and the interpretation. On the other hand, glass-

box models exhibit superiority over grey-box models for modal applications which entails that the development of scientific 

insight is the principal objective.   

In this current dispensation, it is ultimately rational that further applications of ML methods in interpretation of catalysis 

(especially heterogeneous catalysis) will accelerate noetic generation in the field of study coupled with researchers 

continued demand for novel and advanced evolutionary ways to bridging the gap that exists between man and computers 

[83, 84]. Over the years, AI increasingly penetrated and recorded notable successes when employed at various levels in the 

scientific and technological space where there are important challenges in the deployment of an intelligent framework for 

designing new catalytic materials [85-88].  

Review Studies on Application of Computer Programming and AI in Catalysts Design 

A Trend on Challenges and Opportunities 

Traditionally, the method employed in the discovery of novel catalysts is by trial-and-error coupled with chemical intuition. 

Nonetheless, further research has made it evident that this process can be automated. An automatic ML framework 

development capable of guiding itself to discovering intermetallic surfaces with desired catalytic properties is desirable 

[85]. Tran and Ulissi [83] reported of the creation of an automated machine-learning framework for catalysts screening in 

their work by building up a small dataset of the reactivity properties of metal surfaces. Contrary to the conventional 

computational method involving hard-coded instructions provided by technical ingenious, the platform teaches itself by 

progressively seeing examples using algorithms. Tran and Ulissi [83] screened a combination of 31 elements in the chemical 

compound from materials project [89], of which the machine-learning platform identified 130 candidates surface across 54 

intermetallics for CO2 reduction reaction (CO2RR) and 258 surfaces across 102 intermetallics for H2 evolution reaction 

(HER). Furthermore, they devised a fingerprinting method utilizing atomic numbers, Pauling negativity, coordination 

numbers of the adsorbate with surface atoms, and average adsorption energies on pure metal surfaces for each element type. 

However, the models output target was the reactivity descriptors, i.e. *CO and *H adsorption energies for CO2RR and HER, 

respectively. Such simplification of complex reaction networks is enabled by the scaling relations between adsorption 

energies of key reaction intermediates on metal surfaces [90, 91]. In simpler terms, this approach offers the possibility of 

training computers with the known catalytic properties of materials and predicts the top potential catalysts for a reaction of 

interest (specifically electrochemical CO2RR and HER from water powered by green electricity) were used as test systems 

in this study. The traditional catalysts are either too expensive to procure on a large scale and/or require higher energy 

penalty than the prescribed thermodynamics. This can be a handful in the studies such as that requiring the design of viable 

catalysts for the contending half reactions simultaneously occurring at the cathodic end, conjugated with the balancing 
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reaction at the anode for water oxidation is of primal interest, with high demand for sustainable production of chemicals 

and fuels while mitigating (GHG) emissions which has in recent times been propelled by societal clamor as a driving force. 

The framework is designed to be fully automatic, which allows researchers from diverse backgrounds to have a hands-on 

experience of catalyst exploration without diving into the details of quantum chemical simulations of catalytic systems and 

machine learning. Whilst the work of Trans and Ulissi [83] presents an exciting step towards leapfrogging the development 

from its current stage, yet it should be stressed that the development of a strong, versatile and intelligent ML framework for 

catalysts design is in its early stages. The development is largely attributed to the collaborative efforts amongst materials 

scientists and engineers, machine-learning practitioners and algorithms developers to make practical use of AI in catalysis 

and catalysts design. 

Although machine learning offers the promise of being able to explore a vast chemical space automatically, there are still a 

few challenges toward the implementation of AI in catalysis:  

1. Firstly, additional measures – including thermal/electrochemical stability, adsorbate-induced surface segregation, and 

cost of precious metals and the simplicity of synthesis – are essentialities to farther specify the candidate choice of catalysts 

before synthesis and experimental testing.  

2. Secondly, in the case where DFTs apply the uncertainties associated with the involvement of machine-learning models 

needs to be defined in quantity. This is due to the approximations in DFT functionals, reaction mechanisms, energy scaling 

relations, along with intrinsic errors in model regression [92, 93] (which will be later addressed in this review study).  

3. Thirdly, ML models typically are regarded as black-box models due to their unease of interpretation. However, here 

importance is be placed emphatically on identification of the active materials whilst deducing the factors fundamental to 

optimum characteristics, which is critical for increasing the confidence of model users, and in the best case extracting novel 

scientific/technological design principles for catalysts.  

4. Lastly, to keep pace with industries’ ever growing demands for more complex and multi-functional catalytic materials 

in chemical/energy transformations, catalysis practitioners are tasked to develop fingerprints of more sophisticated active 

sites with targeted functionalities [93]. 

Over the years, predictive models developed (such as models developed for oil production and transformation [94-98]), did 

not achieve the uttermost success in series of their applications [99, 100]. However, in the course of evolvement and search 

for improved and advanced techniques inculcating AI, successes have been recorded in diverse fields of study, including 

catalyst designs [101-104]. Xim Bokhimi [101] described the use of AI techniques in industrial processes related to 

heterogeneous catalysis in hydrodesulfurization. The work aimed at giving a predictive approach that involves the use of 

machine learning in creating a database suitable and applicable in future researches and industrial process relating to 

hydrodesulfurization processes. In their approach, two variables (X and Y) were defined in such a way that these two 

descriptors were mutual to one another; mutual in the sense that there is much emphasis on a peculiar feature that spotlights 

these variables which will aid in describing them when one of both works on a new application. These descriptions presented 

were relative to the construction of learning machines that could:  

1. Deduce adsorption energies (with mean absolute errors of 0.15eV for a diverse chemical space);  

2. Predict novel catalysts through learning from the catalytic behavior of materials synthesized via atomic substitutions;  

3. Predict more accurately surface areas of porous matters than the usual Brunauer-Emmett-Teller (BET) method;  

4. Define the adsorption isotherms of nanoporous materials more speedily than the Monte Carlo mathematical simulation 

technique used for predictive modeling; and  

5. Predict the sulfur content in a terminal product after hydrodesulfurization by learning from the variables associated with 

the process.   

These predictions prompted the authors to synthesize several catalysts through the substitution of Ru with the following 19 

elements: Cu, Ni, Cr, W, Hf, Zn, Bi, Pd, Mo, Y, Sc, Sr, Mg, Os, Pt, Au, Nb, Fe, and Rh. Furthermore, in a series of recent 

papers, inspired by the classic Sabatier principle established in heterogeneous catalysis [105, 106], volcano plots were 
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introduced as effective tool to performing high throughput virtual screening in homogeneous catalysis, and perform 

insightful result analysis at the same time, to find optimal catalysts [107-110]. 

Likewise in recent studies, computer-supported catalyst design approach has received heightened attention with the basic 

application of ab initio simulations (i.e. calculations from first principles in a software/code based on DFT) for chemical 

reactions and their potential energy surfaces in predicting the practicability of thermodynamic and kinetic specific 

transformations [111-113]. Ab initio simulations perhaps may seem too basic since they handle schematic and simplified or 

not so complex physical systems with ideal interfaces, and transitions at the atomic scale. Nonetheless, their results converge 

to an exact solution, but only when approximations are small in sufficient magnitude. In times of recent, this method viable 

for calculating electron-density distribution around moving ions provides the most accurate modelling techniques. In the 

course of catalysts design, they take into cognizance and account for local chemical and magnetic effects thereby providing 

significant potential for prediction of catalytic characteristics/properties. The systematic application of machine learning in 

homogeneous catalysis design is becoming more and more of a predominant research topic which has experienced an 

upsurge with the invention of novel schemes for optimizing processes via strategies such as statistical modelling of 

experimental reactivity and selectivity data accompanied with chemical descriptors [114-116]. Quintessentially utilizing 

multivariate linear regression models for experimental drifts modelling joined with the development of new computational 

descriptors ultimately gave way for fast catalyst design in addition to improved yield of products, improved rate of reactivity 

and improved selectivities, such as enantio-selectivity of chiral molecules (enantiomers) [117-119]. A hybrid design method 

(using machine learning coupled with computational transition state modelling) has experimentally proven to be highly 

accurate in reproducing Gibbs free activation energies for nucleophilic aromatic substitution reactions, of which in principle 

this workflow is applicable to catalytic reactions [120]. The primary challenge of catalyst optimization is to a large extent 

catalyst design [121] and therefore it is not only necessary to streamline catalytic experiments themselves and their analysis, 

but the catalysts method of synthesis needs to be rethought from the bottom-up for efficient closed-loop optimization studies 

[122]. Improved catalytic reactions will streamline the synthesis pathways of new catalysts making novel developments 

possible [124]. In that sense, catalysis is autocatalytic for the development of new catalysts. As noted earlier, the challenge 

of predictive ML models represents one part of the challenges, and furthermore the interpretation of the ML models another. 

Realizing simple explainable artificial intelligence models can be dissatisfactory (such as the contemporary black-box 

models of many ML methods) [121, 124-127]. 

Another route toward achieving interpretable artificial intelligence could be via involvement of symbolic artificial 

intelligence [128]. Chemistry is a vast field of study that largely depends on symbols for representations and interpretation 

of processes and related phenomenon. However, interpretability is highly dependent on virtual representations of given 

problems (which are computational in this case) [129]. Therefore, reevaluating utilized model representations will naturally 

guide against complexities while encouraging interpretable artificial intelligence models development. Nonetheless, in that 

regard the panoptic use of descriptors is more or less dissatisfactory as it can lead to unintended negligence/exploitation of 

essential hidden correlations. 

From the perspective of quantum mechanics, the approach of direct use of molecular wave functions or molecular electron 

densities, or systematic simplifications thenceforth, would be best appealing. On that note, the ML models represent the 

operators acting on the wave functions, i.e., the use of molecular representations to deliver the accompanying observables 

[130-132]. 

Another noteworthy development in ML that are progressively infiltrating the center stage in chemical catalysis design are 

Generative Models [133-135]. Generative models are smart concepts that suggests new molecular structures with peculiar 

targeted characteristics. This is perfectly suited for exploratory optimization problems without restriction to the known 

molecular space. This kind of workflow has enormous potential when applied systematically to catalyst design, with 

significant advances concisely in the field.  

Presently, the whole of scientific and patent literature on homogeneous catalysis is an immense data swamp that is 

prohibitively tiresome to excavate as a result of uncommon, rather than the basic criteria for reporting results being 

implemented. However, the need for a factual database of catalysts has been recognized decades ago [136]. At the current 

rates of advancement in computational chemistry, distinctively scientists have been able to simulate nanomaterials and 

reaction systems with comparatively higher precision. It is much easier to execute mathematical operations for a model 
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system with over 1000 atoms by utilizing optimized DFT methods. Despite this, for catalytic reactions, ab initio (from first 

principle) computations of ample systems interactive with their chemical environ remains a major challenge. The 

development of fresh hypothetical techniques for anatomizing individually the principal/elementary catalytic steps 

pertaining to adsorption, desorption, diffusion, reaction and final conversion, elucidating the evolution of electronic 

characteristics at every step, would be extremely invaluable. Ultimately, it all points out to the fact that dialogue between 

theorists and experimentalists is indispensable. Existent catalytic systems are complex and operate in a fashion that 

contemporary computing methods cannot sufficiently capture. Experimental methods and techniques can be thus 

complementary with theoretical insights to improvements in catalytic designs. Conversely, experimentalists can optimize 

their methods by exploiting insights from theoretical calculations. Currently, predictive modelling in catalysis using solely 

theoretical simulations stands as unapproachable [137]. 

Furthermore, in current time’s autonomous atomistic-scale (AAS) computations, have been engaged as excellent tools in 

revolutionizing heterogeneous (electro-catalytic) processes [138]. Heterogeneous (electro-catalysis) have been widely and 

essentially employed in the industrial production of chemicals, from refineries and petrochemicals, manufacture of ammonia 

and sulfuric acid. Nonetheless, some opportunities and challenges are still being encountered, including the fact that: 

• AAS computations can significantly accelerate improvements in catalysts design. However, the essential (software) 

substructures have received marginalized degree of attention and acceptance;   

• Peculiarly, reinforcement learning has been better modified to meet with the demands of targeted properties in catalyst 

development in addition to minimized human cost. Notwithstanding, accounting for catalyst stability under operating 

conditions is rather challenging but accomplishable by a combination of high-throughput computations and machine 

learning. High-throughput computations are very powerful. 

• AAS computations could be complemented by autonomous laboratories, given chance for high-throughput 

experimentations and catalyst optimization via ML. Withal, the large capital investment required for procurement and 

maintenance of research facilities could be a major hindrance [139]. 

The atomistic computations which is of relevance to comprehending and designing of heterogeneous catalysts engages 

various tools. For example, mass and charge transport have significant impact on the overall kinetics and are contingent 

upon the meso-scale (intermediate) characteristics of the catalytic layer as exemplified for the reduction of CO2 [140] and 

production of hydrogen from solar (photovoltaic) cells [141]. However, the intrinsic activity of a catalyst is primarily 

ascertained by its structure at the atomic-scale and determines the highest peak of its performance. In heterogeneous 

(electro-catalysis), this intrinsic activity, being the focus of the present perspective, is closely connected to the complex 

interface between the solid catalyst and either the gas phase (exemplary for petrochemistry) or liquid (or aqueous) phase, 

typical for electro-catalysis and biomass conversion.   

Another efficient tool to consider are Surrogate Models. To efficiently search through the vast chemical space of possible 

catalysts, screening can, and should be accelerated by surrogate models [142]. Surrogate models like predictive models are 

a class of mathematical functions that assay a system to forecast the outcome of a costly computation established on 

descriptors much easier to source, such as geometric fingerprints, graphs, or intrinsic material properties like the d-band 

center. However, these days surrogate models predominantly are reliant on ML [142], gradually replacing their ancestor 

(which is a linear scaling relation) [143]. In spite of this trend toward sophisticated ML, the prediction of transition-state 

energies for hydrodeoxygenation (particularly relevant for biomass conversion) demonstrated that linear models lead to 

essentially the same quality as more advanced, non-linear models [144]. Nevertheless, in general, machine learning holds 

high promise for accelerating molecule, material [145, 146], drug [147], and most importantly catalyst [148, 149] 

development based on a data-driven paradigm. In addition and in a short remark, it is noteworthy that surrogate models in 

the context of catalysis design can be classified under two broad categories [139]:  

1. Interatomic potentials (also called machine-learning potentials (MLPs)) that are used as an alternative to DFT; and  

2. Effective models that are used to circumvent energy evaluations of atomistic models altogether. 

Featuring surrogate models conjugated with costly DFT computations brings about the attainment of autonomous 

computational workflows whereby the surrogate models are used to determine additional computations that are required 

either to (in)-validate the predictions of the model or to buffer the model into a more robust one. 
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In order to deliver on the promise of accelerating catalyst design, research and developments would have to shift focus, 

transitioning from simpler theoretical ‘‘proof-of-principle’’ demo, where the ultimate objective was to showcase the power 

of ML, to applications in solving problems, (such as the use of OC20 in training graph-convolutional neural networks for 

replacement of DFTs energy evaluations by MLPs41 to actually develop novel catalysts, such as demonstrated for CO2 

electro reduction) [150]. In this context, again generative models become a cornerstone. A generative model is a function 

proposing structures outside of the training set. In the absence of these ‘‘universal’’ generative models, we are advocating 

increased reliance on reinforcement learning (RL) techniques when performing ‘‘problem driven’’ machine-learning 

studies. As noted before, RL is yet to be widely adopted by the scientific and technological community. Nonetheless, RL 

has already proven to be highly efficient when applied in optimizing a vast number of chemistry-relevant functions. For 

instance, RL has been trained to efficiently optimize the geometries of organic molecules [151] and in addition to 

determining the threshold energy pathway in the complex Haber-Bosch reaction over Fe(III), efficaciously learning their 

chemical kinetics [152]. 

Active learning minimizes the amount of futile computations in order to limit, comparably only a small range of 

corresponding training sets that are needful. RL has more often than not been instrumental as an active learning framework 

where training set built in accordance to the demands of the model being trained and the promising or target locations being 

explored thence cutting down on the amount of ‘‘useless’’ computations so that only comparably small training sets are 

needed. Ideally, this is well suited for transfer learning: having learned an optimal policy for one problem might be an 

excellent starting point for learning an optimal policy on a related problem making predictions less enigmatic for similar 

problems. Transfer learning is also closely linked to combining information from different sources. For instance, a 

combination of three sources of information (such as surrogate models, DFT computations, and experiments) in an optimum 

way might not be transpicuous, but under the condition that they exhibit somewhat similar trends, the algorithms on how to 

minimize the overall cost incurred for solving a given optimization problem have therefore been developed [153]. 

Furthermore, given that RL is, by construction, problem and system acquainted, formulating generative models is more 

tractable: within a class of systems it is quite natural to screen out for selection the sites of interest, both for surface 

modifications (typical for substitutional doping) and adsorption sites.  

Ability to train surrogate models with small training sets is very significant and important when it comes to the application 

of ML in solving novel problems for which the required training set was initially or naturally not constituted beforehand. 

The autonomous high-throughput experimentation which was developed some decades back to explore a vast chemical 

compound space, (e.g., metals, organics, organometallics, and inorganic solids [154]) was advantageous to researchers who 

were able to unravel chemical compounds then unknown, exhibiting more exotic characteristics than those conventionally 

synthesized thereby acquiring a larger data base on catalysts at a rapid and unprecedented scale [155]. However, since high-

throughput experimentation is more of a cost intensive approach compared to the conventional ways, experimental designs 

involving catalyst synthesis, characterization, and testing would have to be prudently organized to maximize information 

output with limited number of experimentations. As earlier stated, with rapid progress in automation control, integrative 

high-throughput synthesis of catalysts can be made fully autonomous with the support of a guided robotic arm attached to 

the control system – as employed in catalysts synthesis by the sol-gel method. Therefore, optimized parameter conditions, 

e.g. catalyst composition, mixing sequence, reaction treatments, and so on can be obtained with minimal human intervention 

[156-158]. For instance, sputtering is a versatile process for catalyst synthesis at both laboratory and industrial scale, 

enabling deposition of a thin film of catalyst with controllable thickness and hence might be laborious for human 

intervention. This, however, might be convolutional but if well planned will be socioeconomically viable and functional in 

achieving some of the objectives of green chemistry (such as safer chemistry). High-throughput depositions allow creation 

of a library of catalyst materials with a controllable composition gradient and a large range of film thickness [159].  

Pulsed-laser deposition is another phenomenal technique that promotes fast and massive deposition of numerous 

homogeneous materials, executed by an ablation from a high-energy UV laser. This technique has likewise been adopted 

for the combinatory catalyst library, which uses a typical series of quaternary masks in a so-called multi-plume pulsed-laser 

deposition system [160]. Sample holders are being rotated by autonomous robotic arm which are designed usually to house 

pellet precursors and the consequent transfer for further treatment and characterization.  In the sol-gel synthesis of catalysts, 

a library of catalysts as usual is autonomously prepared by a robotic arm with a pipette to convey the precursor solutions, 

transferring them to small phials (between 2–5 mL in capacity) which serves as micro-reactors for wherein sol-gel reaction 
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takes place [161]. In recent times, jet dispensing (equipt in automatic printing technology) was used for high-throughput 

synthesis of a library of co-crystals [162]. In setting up the gradient library in parallel, precursor ink was formulated with a 

preset concentration. This technique assures a more rapid flow in fluid dispensing and also gives a compositional gradient 

of higher degree of accuracy and conformity, thence cutting down on the number of experimentations to be carried out and 

economizing the time spent in production. However, according to Cong et al. [162] the record has attained about 1,000,000 

formulations within an operating hour. 

Although combinatory synthesis involves the formulation of vast arrays of the gradient materials, nonetheless, the discovery 

of structure property relationships is accelerated by high-throughput characterization – which can be made amply 

autonomous by the robotic arm [163]. An example is the development of automated rotating sample changer for X-ray 

diffraction to identify crystallographic features of catalysts. In D8 ADVANCE, developed by Bruker, which can measure 

up to 90 samples in parallel, the robot arm transfers the sample to the rotation sample stage, allowing permanent rotation 

and automatic positioning adjacent to the X-ray beam [164]. Raman spectroscopy is a powerful and non-destructive tool to 

obtain surface properties of catalysts and elucidate reaction mechanisms [165]. In a modern high throughput Raman 

technology setup, a robotic system is employed to move samples and acquire data. This is typically done by the deposition 

of molecular or solid catalysts onto the multi-well plate attached to an automated sample stage [166]. Achieving laser beam 

focus is one of biggest challenges in measuring high throughput Raman spectra for non-experts, and for this reason 

autofocus technology has been developed to allow laser beam refocusing during sample holder rotation [167]. Several 

advanced Raman technologies such as UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy, and 

time-resolved and spatially resolved Raman spectroscopy can also gather information on how catalytic mechanisms occur 

by probing the solutions or reaction intermediates for catalytic CO2 reduction, water splitting, or water purification [168].  

High-throughput catalyst experimentation is very significant in accelerating catalyst formulation [169]. For example, 

automated analysis of catalytic products can be carried out by gas chromatography-mass spectrometry (GC-MS) and high-

performance liquid chromatography utilizing a robotic handling pipette designed to render reliable and accurate liquid 

injection, sample preparation, and pretreatment. Having a miniaturized electrochemical workstation is convenient for 

conducting parallel catalyst testing, whose end target is to shrivel chemical laboratories to a lab-on-a-chip system. 

Microfluidic reactors are sophisticated setups used to test catalyst activity. Their advantages are their versatility, small 

volumes, fast operation speeds, and capability of parallelization, as well as well-controlled parameters (e.g., temperature, 

pressure) [170]. For instance, researchers have studied a gradient catalyst consisting of Cu, Pd, and Au (Cux Pdy Au(1-x-y) 

alloy) connected to individual microfluidic channels, where each end of the channel is accessible by a programmable and 

movable liquid-handling robot-equipped GC-MS nozzle which rapidly screens 100 H2/D2 exchange products within 10 min 

[171].  

Noteworthy, according to Stephan et al. [140], catalyst development can be accelerated by high throughput, autonomous 

computations that identify promising (active) and realistic (under given reaction conditions) catalyst surfaces. Taking into 

account the inordinate complexities associated with predicting the practicability and (long-term) stability of a given catalyst 

from the application of first-principles atomistic computations, the involvement of high-throughput autonomous 

computations in optimal theory-guided catalyst design consisting of in silico screening of the chemical space vies to 

ascertain promising components and active-site patterns. This screening of the chemical space is followed by experimental 

machine-learning enhanced optimization of the synthesis protocol and the reaction conditions to achieve active and stable 

catalysts within the computationally identified family. This experimental optimization can integrate any user-defined cost 

function, for example a trade-off between price, activity, and stability. With time, the autonomous laboratories might 

become as available as supercomputing facilities, opening a new branch of catalysis research, requiring skills somewhere 

between experimental and computational sciences. 

Furthermore, with the seemingly uncontrollable diminution of fossil-fuel reserves and the global call to mitigate 

environmental pollution and greenhouse gas accumulation, the demand for alternative source of energy in the world today 

has even the more in this present dispensation stirred up the need to convert stable molecules (such as CO2, CH4, H2O) into 

fuels and useful chemicals [172-174]. In the catalytic conversion of CO2 activation of other molecular reactants is needful 

as well, molecular reactants such as CH4, H2O, and H2 in particular, because of its environmentally benign nature can serve 

as a reagent which is produced by H2O electrolysis or photo splitting thereby eluding the production of redundant CO2 [175-

177]. Oxygen vacancies have been proposed as active sites for CO2 conversion on some materials [178]. Consequently, this 
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gives rise to a new idea that predictions of catalytic activity of materials for CO2 conversion can be refined based on analysis 

of activation of other reactants and defects.  

It is not new that catalysts design involves predictive modeling of the catalyst-reactants interaction which is challenging as 

a result of the complexity and multifariousness of structure-property relationships across the vast chemical space. Mazheika 

et al. [179] reported a systematic scheme for a noetic catalysts design using the AI (viz. decision tree regression (DTR) and 

subgroup discovery (SDG) analysis) in identifying catalyst genes (features) that match with chemical mechanisms that 

initiates, facilitate, or impede the activation of CO2 leading to a chemical conversion. SDG permits the identification of one 

or more distinct combinations of catalyst materials features (genes) that encourages catalyst activation. On the other hand, 

DTR analysis is performed using Python scikitlearn libraries with fitting of model done with regard to the cost function (i.e. 

mean squared error (MSE) and mean absolute error (MAE)), enclosing the deviation of fitted values of a target property 

from the actual values [179]. The AI model is trained on first-principles data for a wide category of oxides. Surfaces of good 

catalysts experimentally established have been shown to systematically exhibit gene combinations which is consequential 

to the strengthened extension of a C-O bond. These same gene combinations minimized the OCO-angle, which was formally 

suggested as an indicator of activation, even though under the constraint of the satisfied Paul Sabatier principle. The Sabatier 

principle is a qualitative way of predicting the activity of heterogeneous catalyst and in this case is taken into account in 

order to ensure that the adsorption energy between reactants and catalysts is neither too strong nor too weak. However, for 

this principle to be satisfied the transfer of valence electron to CO2 has to be intermediate or moderate. This phenomenon 

is attainable by the charge density delocalization about the oxygen (O) sites and/or by defacement of the adsorbed molecule 

resulting from covalent bonds formation between O-atoms in CO2 and surface cations. It was based on these findings that 

Mazheika et al. [179] not only developed the subgroup-discovery strategy for finding improved oxide-based catalysts for 

the conversion of chemically inert molecules such as CO2 into useful chemicals or fuels but also proposed a set of new 

promising catalyst materials for CO2 conversion. On account of the number of active surface cuts and Paul Sabatier 

principle, Mazheika et al. [179] proposed NaSbO3 to be the most promising yet to be explored catalyst for temperatures 

ranging as high as 340°C and for pressures of about 1 atmosphere of CO2. Going further, Mazheika et al. [179] proposed 

some A+1B+5O3 type promising materials namely: KSbO3 (for temperatures up to 110°C) and RbNbO3 (up to 360°C) 

belonging to the two subgroups, and LiSbO3 (230°C), CsNbO3 (260°C), CsVO3 (110°C), NaVO3 (130°C) all of which are 

classified under either of the subgroups.  

Furthermore, the ability to routinely employ ML models periodically in the execution of research practices will have a 

drastically be impactful on R&D of polymeric materials. Advancements in ML and automated experimentation are poised 

to vastly accelerate research in polymer sciences. Studies have recurrently shown that AI systems and ML models features 

immense prospects in achieving a much more rapid development of polymeric materials through labor costs economization 

following antecedent time reduction in running processes for further identification of optimized material surfaces [180-

184]. Another vital facet for enabling ML integration in research workflows is data representation. However, a lot of data 

models are inflexible and rigid making it herculean to fit-in a wide matrix of experiment and experimental data types found 

in field of polymer sciences. This inflexibility presents a significant barrier for researchers to leverage their historical data 

in ML development. Park et al. [185] showed that a domain specific language, termed Chemical Markdown Language 

(CMDL), provides flexible, extensible, and consistent representation of disparate experiment types and polymer structures. 

CMDL enables seamless use of historical experimental data to fine-tune regression transformer (RT) models for generative 

molecular design tasks. Park et al. [185] demonstrated the utility of this approach through the generation and the 

experimental validation of catalysts and polymers in the context of ring-opening polymerization (ROP), critically showing 

how the CMDL tuned model preserves key functional groups within the polymer structure, allowing for experimental 

validation.  

Although open source repositories, data models, and polymer representations have significantly advanced the development 

of ML models for polymer chemistry, there exists a need for software tools which provide flexibility in experimental data 

representations and their translation into ML training sets. Such tools are able to invalidate important barriers and enables 

research groups to set out leveraging their own historical data sets in ML applications as well as provide an interface to the 

broader ecosystem of open-source tools, databases, and models being developed for polymer informatics. To create a highly 

adaptable software toolkit for data representation and demonstrate its utility in ML workflows for catalyst and materials 

design, first identified were three critical features [185]: 
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• Extensibility — such that new data or experiment types can be readily accommodated;  

• Support for definition of polymer representations; and  

• Support for representation of continuous-flow experiments. 

Datasets developed by the use of CMDL facilitated the development of very efficient RT models for ROP catalysts design 

and structurally valid co-polymers. The conventional R&D pattern ordinarily carried out by experimental trial-and-error in 

the research laboratory [186, 187, 188], would demand researchers to determine the latent target sites of catalyst materials 

and synthesis paths based on prior knowledge, and then move on to carrying out experimentations to optimize the synthesis 

conditions. The extensive development cycle and performance unpredictability hinders discovery and application of new 

catalytic materials. However, DFTs computations have been broadly applied in examining and/or predicting theoretical 

performance of catalytic materials and also explore deep into the mechanism of their reaction [189-191]. In spite this, the 

unexplored chemical space might seem infinite since DFT calculations are limited when it comes to predicting them. 

However, the computational power cost of DFT calculations increases significantly when taking into cognizance the 

increase in actual environmental factors [189, 192]. Therefore, more strategies are requisite to speed up discovery of new 

materials. 

AI is no new technology, however in various fields and at various stages in R&D it has recorded successes when 

systemically applied:  

• To theoretical studies;  

• In the development of scientific methods and techniques; and also  

• In systems advancement used to simulate, broaden and flesh out human intelligence [193].  

Since the inculcation of AI via ML and intelligent robot technology over the years there has been widespread advancement 

in practical and theoretical studies [194-196]. The application of ML in structuring predictive models is consolidated on the 

availability of qualitative and quantitative variety of algorithms to predict the unknown chemical space – which is the soul 

of its applicability in catalyst design [194, 197-199], material characterization [200-203] and a host of other fields of study 

interest [204, 205]. AI technology (such as ML, deep learning, robotics) have with great precision improved the screening 

and synthesis rates, accuracies of energy catalytic materials [196]. Han and Xiang [206] on “the applications of AI in 

intelligent design and synthesis of energy catalytic materials, summarizing and introducing AI techniques applied to 

materials science, gave detailed description of the workflow of ML, data sourcing and assemblage, as well as providing 

information regarding the algorithms applicable in ML models structuring. Han and Xiang [206] extensively, elaborated on 

the aspects of: ML models applications in intelligent design of materials, intelligent synthesis technology of materials, 

intelligent characterization of materials, intelligent design of energy catalytic materials, and so on. Catalytic materials 

usually have different theoretical performance indexes in diverse fields of applications, such as theoretical overpotential in 

electrocatalysis field [207], adsorption energy of intermediates associated with overpotential [208], band gap in 

photocatalysis field [209], etc. These performance evaluation parameters are commonly the simulated energy barrier of a 

catalytic reaction or the materials’ chemophysics, otherwise obtainable by calculations [192, 210]. In addition to 

electrocatalysis, metal oxide (Me-O) materials screened with the aid of ML also have good application prospects in other 

catalytic fields. In material screening, the structural framework of Me-O coupled with the complex nature and diverseness 

of doped metals provides a suitable stage for ML to effective play its role. In a study, Xie et al. [211] introduced Lewis acid 

strength, which is strongly related to the kinetic reaction rate of oxygen reduction reaction (ORR) of perovskite oxides 

(ABO3) at high temperature, as a descriptor and verified the validity of eight different regression models. According to Xie 

et al. [211], among all regression methods, the mean square error (MSE) values corresponds to the ML model-based training 

set (being 0.009 Ωcm2) and the test set (being 0.013 Ωcm2), attaining the best fitting effect among all other regression 

models. The authors discovered that Lewis acid strength at sites ultimately contributed to the effective performance recorded 

with recorded results indicating strong correlation between ionic Lewis acid strength and the intrinsic ORR activity at 

elevated temperatures of the cathode, verified in the electrochemical characterization.  

Recently, Xu et al. [208] had found through computational and experimental ML assisted studies that the Oxygen Evolution 

Reaction (OER) activity of spinel oxides is basically ascertained by covalent competition between tetrahedral and octahedral 
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points of positioning – of which the authors, however concluded was the determinant of the cationic site exposure, and 

hence its activity. Driven by this finding, Xu et al. [208] computed data sets for over 300 spinel oxides via theoretical 

computations which were subsequently applied (with ML models) in screening for covalent competition of spinel oxides 

giving an average absolute error of 0.05 eV. Wang et al. [209] developed a targeted drive method based on ML techniques 

and DFT calculations to find stable lead-free organic-inorganic hybrid perovskites (HOIPs). Also, Smit et al. [212] trained 

a set of ML models automated to designate oxidation states to metal ions in a metal-organic framework (MOF). The research 

centered on prediction of oxidation states of metal centers in MOF, particularly in mixed valence MOF and flexible MOF. 

Furthermore, the study provided an application for the distribution of oxidation states to metal centers in MOF on a 

materials’ chemical space. The research of authors [209, 212] presents a more concise and accurate technique for self-

prediction of the materials properties. ML is used to assign values and record data for properties such as valence states of 

material structures. 

For a variety of metal combinations (such as Bimetallics, alloys, etc.) in catalyst design it is however very difficult to 

elucidate comprehensibly the synergies that exist between metals, because of the complexity of their chemical structure 

[213-215]. While quantum chemical computations shows there exist a possibility of assaying the chemical relationship 

between alloys structural composition and properties, high computational and time costs limit the development of metal 

combination catalytic materials. Fortunately, ML in its capacity to handle complex problems has proven to be very effective 

in solving the problems of metal combination systems. Now, a basic ML model can be designed to predict the properties 

and behavior of materials, which in this case bring about speedy breakthrough in discovery of high-performance alloy 

materials. 

To backup this claim, Sargent et al. [213] were able to develop a highly efficient Farady Copper-Aluminum (Cu-Al) 

electrocatalyst by employing theoretical computation and ML. These researchers were able to construct 244 different Cu-

containing intermetallic crystals, identifying 12,229 surfaces and 228,969 adsorption sites and the CO adsorption energies 

at various sites was computed by DFT to produce a data set for ML. The ML prediction outcomes showed that Cu-Al as a 

(most) promising material with high activity and selectivity for CO2 reduction. Experimentations and computations revealed 

that Cu-Al alloy provides multiple sites to achieve the best binding with CO, to effectively reduce carbon dioxide. In 

addition, the Faraday efficiency exceeded 80% with a high current density (400mA/cm2) – the highest Faraday efficiency 

so far obtained. The data utilized in this research work was drawn from a collection of databases and DFT computations, 

producing a comprehensive yet efficient data collection technique. Data collection has to be rigorous for efficient screening 

and synthesis of new high-performance materials.  

Also, for electrochemical CO2RR, Wang et al. [214] reported the discovery and optimization of additives using ML in the 

preparation of Cu catalysts for electrochemical CO2 reduction. Synthesis of Cu catalyst was by electrochemical deposition 

using copper salt as staple, and various metal salts and organic molecules acting as additives. Following three iterative 

experimental tests, ML analysis, prediction and redesign, respectively it was discovered that salt of tin (Sn) was an essential 

additive for CO and HCOOH extraction, and fatty alcohol an essential additive favorable for C2+ formation. Farther catalysts 

characterization synthesized using various additives showed that fatty alcohols may encourage the formation of Cu2O cube 

in the course of electro-deposition. In addition, alloy catalysts selected by ML also show exciting potential performance in 

ORR as earlier discussed. Han et al. [215] combined first-principles DFT with ML technology and based on neural network 

potential algorithm, systematically calculated, simulated and screened the composition, element distribution and ORR 

properties of terpolymer PtFeCu nanoparticles. 

For application of ML-assisted screening in alloy materials, Vivek B. Shenoy et al. [216] in their research work trained a 

graph neural network to predict the adsorption energy of catalyst/adsorption system based on the influence of tensile effect 

of alloy catalyst on adsorption energy of reactive species. The Cu-based binary alloy catalyst in the Open catalyst Project 

[216] was utilized as the source for data collection in computing the adsorption energy at various tensile conditions. The 

established ML model successfully predicted the adsorption energy of 85% of the unknown test data. Taking ammonia 

synthesis as an example, potential catalysts for Cu-S alloy under tensile strain were selected. In this work, the impact of the 

alloy structural tensile properties on the adsorption of various species was discussed in-depth by employing ML. While the 

research study however was exclusive of experimental components, it is of extreme importance that the relationship between 

the theoretical adsorption of various species and metal-combination (alloy materials) structure be ideally established. In 

such cases as this, ML is ideal for optimizing the engineering characterization, accelerating selection and for enumeration 
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of the core descriptors for alloy materials.  Linic et al. [217] provided a crosscut to building accurate and explainable 

electron-structure descriptors of characterized catalytic materials by utilizing unsupervised ML principal component 

analysis. The authors rebuilt the acquired descriptors of the electronic structure of the material so as to account for the 

electronic structure effect captured by every one of the principal component descriptors, and also the local changes in the 

geometric structure of a region these effects map to. Furthermore, this technique is established by searching for principal 

component descriptors responsible chemisorption on transition metal/alloys surfaces and is analogized with the observed 

outcome of chemisorption descriptors on physical bases in order to affirm the technique’s accuracy. 

In other practice, for atomically dispersed catalyst (i.e. catalyst which constitute of single atoms sparsely distributed over 

the surface of the support [218, 219]), the heterogeneity of the support is consequent to metal atoms exposure to a variety 

of chemical environs on the support surface, hence bringing about possible dissimilarities in the catalytic activity of different 

metal atoms at different regions of the support surface. However, atomically dispersed catalysts can be supported on diverse 

surfaces, such as surfaces of: metals, metal oxides, carbon materials, polymer materials, and so on [220]. The structural 

characteristics of atomic-level dispersion catalysts is fundamental to ascertaining what the interaction between the metal 

and the coordination atoms (C, N, O, S, P) on the support will be. This phenomenal interaction is highly essential for single 

metal atoms’ stability and activity. In recent pasts, researchers have suggested using diatomic catalysts as better substitute 

to atomically dispersed catalyst at the nascence of their discovery. This being as a result of their characteristic superior 

metal loading capacity, highly complex and their possession of more flexible active sites [187, 221]: desirable characteristic 

properties which are responsible for their superior catalytic performance and offers better chances for electrocatalysis. It is 

hard to discover atomic-level dispersion catalysts having higher stability and activity by engaging the conventional 

techniques of theoretical computations and experimental synthesis on account of the wide variety of coordination atoms 

and bimetal combinations of support. On account of this, inculcating ML is a most worthy approach to tackling and resolving 

such challenges [222-224].  

In times of recent, atomic-scale dispersion catalysts (otherwise known as atomically dispersed catalyst) have drawn much 

attraction to researchers in electrocatalysis studies. Being conversant with significant electrode reactions (such as ORR, 

OER), there is a pressing need for design of electrocatalysts with superior performance characteristics. Li et al. [225] devised 

a single-atom catalyst design strategy which was based on first-principles computing and topological ML in developing an 

efficient OER catalyst. Employing the DFT method, the OER characteristics of 15 metal atoms were computed at single-

vacancy and double-vacancy defects respectively and afterwards the theoretical overpotential was obtained by calculating 

the adsorption energy of oxygen species. Furthermore, the topological structures around metal atoms were analyzed based 

on the topological learning algorithm, extracting the node information and the link information between metal atoms and 

the substrate, and a miniature collection of DFT calculation data were compounded in training the prediction model to 

predict the OER catalytic performance of different other transition metals on carbon substrates with variety of structures. 

In order to screen, monoatomic catalysts in a more effective way, the team suggested the use of a volcanic-type curve 

description technique, and that the catalyst screening rate be increased (by a factor of 13 x 104). Huang et al. [226] in 

designing a high-performance dual-function OER/ORR catalyst, based on C2N structure in a combination with DFT 

calculation and ML, discovered that the adsorption energy of a single oxygen atom has a volcanic relationship with the 

catalytic activity, and hence combined with the normalized Fermi abundance, formed a fresh electronic structure descriptor. 

In addition, Ding et al. [227] based on a single transition metal AlP system, discovered that in substituting two P atoms with 

two N atoms improved the catalytic activity. First using DFT computations they were able to affirm the electrocatalytic 

performance of bifocal oxygen. Then they going farther to use the ML method based on gradient lifting regression model 

to explore for other possible sources of catalytic activity. Observations indicated that the d electron number, the radius and 

charge transfer of the atom of transition metal are also important descriptors that corresponds and explains the adsorption 

activity. As regards to the development of catalyst for lithium-sulfur batteries, Li et al. [228]  consistently studying the 

adsorption mode of polysulfide based on ML technique computed by high-flux DFT computations, screened thousands of 

transition metal monoatomic catalysts on nitrogen-doped carbon materials support. Based on a classifier trained by the 

convolutional neural network of crystal graphs, the team of researchers successfully characterized the sorbent with S-S bond 

breaking distinguishing them from other types of sorbent. The ML-trained regression model was also efficient in adsorption 

energy prediction, having an average absolute error of about 0.14 eV, and could also predict a series of actively performing 

catalysts. 
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DFT computations can be effectively applied while studying the material structure-activity relationship of atomic-scale 

dispersion catalyst, due to the structure of their active center. Thence, ML has been very much applicable by researchers in 

dealing with complex metal combinations in the material screening of atomically dispersed catalysts. Considering, ML 

models are capable of aiding researchers in studying the dynamic processes of materials to in order to acquire a more vivid 

reaction mechanism, its application in studying the active structure of atomically dispersed materials is accurate since it is 

comparatively simple and comprehensible. These findings are principal to advancements of and gives a novel directive for 

research and development of ML-assisted atomically dispersed techniques.   

The conventional techniques of designing metal composite materials ordinarily engages numerous parametric quantities, 

and requires iterative trials to obtain the ideal synthesis conditions. Moreover, owing to the complex nature of the electronic 

structures of metal complexes, the often strong correlation effects, DFT will be inaccurate in predicting the characteristic 

features of strongly correlated systems, therefore rendering DFT-based screening unreliable. Nonetheless, Liu et al. [229] 

was able to successfully (and for the first time) apply classification algorithm in ML-optimized model to channel the 

synthesis of two-dimensional materials by chemical vapor deposition (CVD) and regression algorithm in guiding the 

hydrothermal synthesis of sulfur-nitrogen-doped blue fluorescent quantum dots with high fluorescence yield, based on 

which a carbon quantum dot solution (yielding about 55.5%) was synthesized successfully. Kulik et al. [230] devised an 

inexpensive technique capable of enhancing the dependability of DFT high-throughput computational screening. A ML 

model was trained on the basis of diagnostic parameters of the strong association effects of 5,000 transition-state metal 

complexes, to speedily recognize the strong association effects of electrons in large-scale (>100,000 molecules) high-

throughput screening. This technique is favorable for application in the design and development of functional molecules 

such as catalysts. Although, most current researches have focused on application of ML in metal complex catalytic materials 

design. Nonetheless, ML has been instrumental in the design of some inorganic catalytic materials as well. However, there 

exist a vast number and class of energy catalytic materials (such as non-metal materials). Metal-based materials have 

definite crystal structures and apparent active centers in energy catalytic reactions making it much easier for feature 

extraction. This is not so with non-metal materials. Moreover, with the vast variety of metal doping types and consequently 

the complexity of material design becoming more complicated there is need for a more credible approach to attacking 

challenges. ML offers great prospects in dealing with and solving these challenges. 

Presently, the end target of chemical researches are intricate and high-dimensional. However, the conventional research 

techniques are principally rigorous and by trial-and-error – methods, which although objective are however subject to 

prejudice and shallow preconceptions since it prevents the objective study of peculiar and intricate phenomenon that are 

key to understanding catalyst mechanisms, which is essential to unlocking hidden facts about them.  Exploring, discovering 

and ultimately synthesizing ideal catalysts comes with challenges such as confronting a vast unmapped chemical space. In 

material synthesis, the challenge of optimizing synthesis conditions and vividly establishing the relationship between 

processes, characteristic properties of materials, and most promising synthesis path can be overcome by inculcation of 

computer-assisted retro-synthesis analytics. The progress made so far has been impactful especially in terms of high-

throughput synthesis; which has been time economical as a result of allowing multiple experimental processes been run 

concomitantly, yet the analysis of experimental outcome is difficult to carryout. In attempt to discover more efficient novel 

synthesis paths Cooper et al. [231] successfully developed a self-operative AI robot chemist having android attributes 

capable of handling various lab equipment in a standard lab like a human. From the initial test, 668 experiments were 

independently accomplished within the span of 8 days by building an adaptive automated experimental environment and 

developing a new chemical catalyst. Furthermore, the optimization of synthetic variables were studied by way of the 

developed algorithm. The developed intelligent synthesis system was able to survey the variables of 10 dimensions based 

on the outcomes of the preceding experimentation and also could ascertain the successive optimum experimentation to carry 

out from a set of more than 100 million prospective chemical experimentations in the lab. Cronin et al. [232] had suggested 

an autonomous chemical synthesis robot to search, detect and recognize, as well as optimize nanostructures goaded by real-

time spectral feedback, theory, and ML algorithms. In the chemical space, five categories of NPs were able to be identified 

in about 1,000 experimentations in a multiple steps open exploration involving the synthesis of nanoparticulate gold (Au-

NPs) by visible characterization. Moreover, in an attempt to optimize the nanostructures of Au-NPs in other to obtain choice 

optical properties a yield of about 95% was achieved, through a combination of experimental and spectral simulations. 

Although, a good number of researchers on account of the use of intelligent synthesis platforms for novel materials have 

given irrefutable verdicts based on their respective systems of research. Nonetheless, the approach of intelligent systems is 
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material bias, as it can only be used for peculiar category of materials. Therefore, there is need to establish a research 

database incorporating material information for researchers. Based on this, Luo and Jiang et al. [233] built a data-intelligent- 

driven whole-process robotic chemist by building and integrating mobile robots, chemical workstations, intelligent 

operating systems, and scientific databases. The designed intelligent platform could automatically search and read literature, 

analyze literature data, propose scientific hypotheses and formulate experimental schemes. Using a Bayesian optimization 

program, the team was able to discover the optimal catalyst from a class of 550,000 attainable metal ratios. In comparison 

with the conventional ‘trial-and-error’ laboratory technique of determined catalyst materials, the intelligently synthesized 

materials exhibited superior characteristics. In addition to the use of intelligent synthesis platforms, the authors incorporated 

literature reading and analysis modules, thereby modifying the entire system into a comparatively more intelligent workflow 

system. Currently, AI technological approach (especially in terms of robotics, ML, etc.) has greatly drawn a lot of attention 

in the research space with its rapid development schemes and therefore is very crucial for advancements in the chemical 

field. However, developing intelligent platforms befitting of various species of chemical materials around intelligent robots 

is challenging. The possibility of a convergence of ideas from robotics technological experts and researchers in designing 

intelligent synthesis platform will be a convenient move counteractive to some of these challenges.  

Intelligent Characterization and Reaction Kinetics of Materials  

Prior to the selection of target catalytic material via intelligent design and synthesis, there is need for characterization of 

target materials’ reaction process and fine structure in the atomic spectrum [233-236]. AI has been an incentive which on 

account of its strategic conjugation with basic scientific experimentation, has birthed advanced schemes and directives 

towards improving research prospects [234-236]. The dynamic simulation of catalytic materials is essential in their synthesis 

and application. Knowledge of dynamic mechanism of catalysts materials can be reformative to researchers’ approach in 

discovering and designing not just novel but also superior catalysts materials. Ordinarily, simulating the dynamics of 

materials via first principles is often demanding; it involves high computational power, time uneconomical because 

oftentimes materials dynamics very complex and hard to decipher. Thus, the use of ML becomes essential in order to speed 

up the dynamic simulation process of materials. In an attempt to synthesize a standard transferable organic molecule, A. E. 

Roitberg et al. [237] trained on quantum computing through deep neural networks (DNN). After suggesting the ANI 

method, the research team built the ANI-1 model based on the database constructed from the network. The model trained 

was capable of predicting the total energy of an organic molecule comprising of four different atom types (i.e. hydrogen, 

carbon, nitrogen and oxygen). On account of a series of case studies, the research team showed that ANI-1 had superior 

chemical accuracy than DFT computations on larger molecular systems. While the study did not investigate on the chemical 

reaction dynamics of the system, the predictions for the molecular energy model proposed by the study renders a rather 

more efficient algorithm for molecular dynamics simulation. Leveraging on such improvements will bring about rapid and 

efficient research predictions and energy computations for kinetic simulation processes. The work of Gong et al. [233], in 

attempt to solve the challenge of the active site of oxide-derived copper catalyst in generating multiple carbon (C2+) products 

in the process of CO2 electro-reduction (CO2RR) was ill-defined, until by using neural networks (NN) in conjugate with 

DFT computation and simulation the author was able to describe the real catalyst surface model. The molecular dynamics 

of the material under the reaction potential were simulated by ML model, and over 150 surface sites were discovered, 

proving that the reaction sites were the planar-square and convex-square sites in its structure. The authors further used ML 

to modify the complex process of CO2RR for better understanding giving a more vivid account of the reactions activity. 

The study went further to prove the importance of ML in the simulation of reaction dynamics because compared with the 

use of the conventional DFT computations, explanations on the complexity of microscopic reaction processes were better 

established. While in contemporary times research in the field of materials sciences and precisely on the scope of energy 

catalysis has focused on material performance, researchers have often neglected the ‘unseen’ material characteristics (such 

as the microscopic reaction mechanisms, in-situ fine structure) that are principal to the evident performance; which are 

essential for effective simulation of the dynamic process of materials and for rapid prediction of the in-situ characterization 

data [208]. On the basis of AI inculcation, researchers are no more restricted to the use of only contemporary standards and 

techniques of material characterization, and of high-computing-power costs equipment, but are capable of acquiring more 

precise predictions with the availability of credible database for material characterization beneficial for accurate 

interpretation of dynamic simulations. 

 

https://www.paperpublications.org/
https://www.paperpublications.org/


ISSN  2350-1030 
 

International Journal of Recent Research in Physics and Chemical Sciences (IJRRPCS) 
Vol. 10, Issue 2, pp: (113-140), Month: October 2023 – March 2024, Available at: www.paperpublications.org 

 

 Page | 127 
Paper Publications 

 

2.   SUMMARY 

The traditional ways of catalysts discovery and synthesis come with a lot of challenges (such as: the cost inefficiencies and 

high energy demands, the uncertainty of the large unexplored chemical space, challenges of repeated experimental trials, 

the uncertainty of a successful discovery, environmental implication of catalyst utilization and so on). AI has offered great 

prospects to tackling these challenges. The inculcation of ML has advanced the catalysts design field, with the development 

of models and smart active learning systems that engages computational and theoretical techniques in predicting the 

characteristic properties and behavior of chemical systems, their anticipated activity and selectivity (i.e. predictive models) 

and can possibly go as far as suggesting new molecular structures with peculiar targeted characteristics (i.e. generative 

models). These represents the key goals of AI in catalysts design. Predictive models are primarily database builders, while 

generative models are secondary database generators. However, in the application of predictive modelling another challenge 

ensues from the high dependence on black-box models by researchers from earliest times and even in contemporary times. 

This has been a limitation to understanding catalysts design profoundly. Black-box models are somewhat unreliable and 

problematic despite their high level of accuracy, their inexplicability and complexities – which may infer that new 

undesirable features and descriptors begin to come into play. A conceptual combination of systems knowledge (white-box 

models) with statistical information from dataset (black-box models) have birthed the grey-box models. Interpretability is 

of key concern in catalysts design. Therefore, grey-box models and glass-box models which are recommended as better and 

best easier to understand better predictive models respectively. Glass-box models are easily explainable compared to black-

box models where explanations are generally approximate, but comparative in terms of accuracy.  

With the discussions so far, it is very clear that an accruing number of researchers place more focus on the use of ML for 

material screening and verification of DFT calculations. However, advancements in material sciences is inseparable from 

researchers’ comprehensive knowledge of the relationship between the structural properties of materials and their activity. 

Also, featurization – a process in material screening that involves the collection of varied data forms and their conversion 

into numerical data explainable by basic ML algorithms, is very vital. In addition, predictions accuracy is very much affected 

by extraction of descriptor and essential characteristics. All these are constituted amongst researchers on the material 

structure and the target activity based on the understanding. Beyond model development, research has been in recent past 

very keen about the development of fully automated systems, robotic arms and chemists to ease the task of carrying out 

laboratory works and also bypass unnecessary human involvement with chemical systems. AI has great potential to unearth 

characteristics features which catalysts practitioners maybe alien to, make theoretical proposals that are key to maneuvering 

the challenges encountered in catalysts design. All of these developments have been advantageous to advancements in the 

discovery and implementation of cognitive intuitions principal to the exposure of some less intricate and obscure concepts 

that have advanced the field of study.    

3.   CONCLUSION AND RECOMMENDATIONS 

To determine the best catalyst design involving artificial intelligence (machine learning), the inherent physicochemical 

properties of catalysts (such as morphology/crystal structure, valency, etc., even at the atomic and subatomic levels) that 

make them ideal choices for a particular process has been revealed, and altered to choice catalysts. The involvement of 

nanocatalysis helps tackle to a large extent a good number of the challenges encountered by AI in creating a database to 

resolve issues of persistent iterative trial-and-error. As a result of their pronounced features such as increased surface area, 

activity and selectivity, etc., the sensitivity of AI tools in their applications is increased as atomic characteristics are made 

more macroscopic to detection.  

In addition, it will be advantageous if all experimental results, including the raw data and metadata containing the 

experimental parameters, are transferred automatically to cloud-based servers, which can afterwards be analyzed by 

automated data analysis and visualization tools. The most critical role of high-throughput experimentation is to find the 

structure-activity relationship of the catalyst. Thus, the algorithm developed for automated data analysis should estimate or 

predict the optimum synthesis condition as feedback to the high-throughput experimentation. This is an ideal concept of 

data-guided combinatory synthesis and data-driven catalyst discovery. 

Finally, the development of explainable artificial intelligence in the field of chemical studies will lead to advancements in 

human comprehension, cut down on cost as evident in the development of reinforcement and active learning, inspire hybrid 

human- and computer-guided catalyst design, and in the end improve machine learning models for catalysts design.  
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